martes, 11 de mayo de 2010








transistores

El transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956. Fue el sustituto de la válvula termoiónica de tres electrodos, o triodo.

Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el semiconductor metal-óxido FET (MOSFET). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor metal-óxido complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.

El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.

De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas básicos para utilización analógica de los transistores son emisor común, colector común y base común.

Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los ter
minales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.

Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.


Tipos de transistor

Transistor de punta de contacto

Fue el primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de base es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.

Transistor de unión bipolar

El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.

La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).

La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor esta mucho más contaminado que el colector).

El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.

Transistor de unión unipolar

También llamado de efecto de campo de unión (JFET), fue el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contactos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.

Transistor de efecto de campo

El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.

  • Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
  • Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.
  • Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.

Fototransistor

Los fototransistores son sensibles a la radiación electromagnética en frecuencias cercanas a la de la luz visible; debido a esto su flujo de corriente puede ser regulado por medio de la luz incidente.

Transistor bjt

El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico de estado sólido consistente en dos uniones PN muy cercanas entre sí, que permite controlar el paso de la corriente a través de sus terminales. La denominación de bipolar se debe a que la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones; pero tienen ciertos inconvenientes, entre ellos su impedancia de entrada bastante baja.

Los transistores bipolares son los transistores más conocidos y se usan generalmente en electrónica analógica aunque también en algunas aplicaciones de electrónica digital, como la tecnología TTL o BICMOS.

Un transistor de unión bipolar está formado por dos Uniones PN en un solo cristal semiconductor, separados por una región muy estrecha. De esta manera quedan formadas tres regiones:

  • Emisor, que se diferencia de las otras dos por estar fuertemente dopada, comportándose como un metal. Su nombre se debe a que esta terminal funciona como emisor de portadores de carga.
  • Base, la intermedia, muy estrecha, que separa el emisor del colector.
  • Colector, de extensión mucho mayor.

La técnica de fabricación más común es la deposición epitaxial. En su funcionamiento normal, la unión base-emisor está polarizada en directa, mientras que la base-colector en inversa. Los portadores de carga emitidos por el emisor atraviesan la base, que por ser muy angosta, hay poca recombinación de portadores, y la mayoría pasa al colector. El transistor posee tres estados de operación: estado de corte, estado de saturación y estado de actividad.


Transistor mosfet

n transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:
  • Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
  • Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.

Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).

El transistor MOSFET tiene tres estados de funcionamiento:

Estado de corte [editar]

Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador aunque se aplique una diferencia de potencial entre ambos. También se llama mosfet a los aislados por juntura de dos componentes.

Conducción lineal [editar]

Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.


Electricidad domiciliaria

Como en toda actividad, en el trabajo eléctrico, recalcámos, debemos de tener precauciones y reducir los riesgos a "0". Cuando la electricidad se maneja inteligentemente, es segura. Para que una persona pueda considerarse un electricista competente, debe de aplicar algunas reglas, mismas que se dan a continuación en este tutorial sobre electricidad:

1.- Se debe de usar ropa adecuada para este trabajo.

2.- NO usar en el cuerpo piezas de metal, ejemplo, cadenas, relojes, anillos, etc. ya que podrian ocasionar un corto circuito.

3.- Cuando se trabaja cerca de partes con corriente o maquinaria, usar ropa ajustada y zapatos antideslizantes.

4.- De preferencia, trabajar sin energía.

5.- Al trabajar en lìneas de alta tensiòn, aunque se haya desconectado el circuito, se debe de conectar ( el electricista ) a tierra con un buen conductor.

6.- Es conveniente trabajar con guantes adecuados cuando se trabaja cerca de líneas de alto voltaje y proteger los cables con un material aislante.

7.- Si no se tiene la seguridad del voltaje, o si esta desactivado, no correr riesgos.

8.- Deberan abrirse los interruptores completamente, no a la mitad y no cerrarlos hasta estar seguro de las condiciones del circuito.

9.- Si se desconoce el circuito o si es una conexiòn complicada, familiarizarse primero y que todo este correcto. hacer un diagrama del circuito y estudiarlo detenidamente, si hay otra persona, pedirle que verifique las conexiones o bien el diagrama.

10.- Hacer uso de herramientas adecuadas ( barras aisladoras ) para el manejo de interruptores de alta potencia.

DE SER POSIBLE OPERAR EL CIRCUITO CON UNA SOLA MANO.

No hay comentarios:

Publicar un comentario